MAKE PARSING GREAT AGAIN

(with string functions and regular expressions)

Robert Gebeloff @gebeloffnyt
The New York Times
Dataharvest 2024

So much of what we do in data

JA B
journalism is fun. Writing queries.

Making maps. Holding powerful 1 DogName Count
people accountable, etc. 2 BUDDY 83
What’s not to love? 3 MAX 81
Cleaning and parsing data, for 4 SADIE 20
one.
There’s usually a time in > Lucy 74
every project where you’re excited to 6 BAILEY 67
dig in, only to realize that the data 7 DAISY 64
you want is not in easily diggable 8 LUNA 63
format. e date ourmaicte. e 9 CHARLIE 60
| s.agjournalss,were 10 MAGGIE 57
trained to think in rows and columns.
11 MOLLY 56
Every row is a record (name of 12 |COOPER 54
dog). 13 GINGER 49
Every column is a 14 JACK 49
characteristic of that record. (how 15 WILLOW 49
many dogs have that name. = [wm— o

When we obtain data from the government or some other source, this
is what we expect. Clean data organized in this fashion.

But in an increasingly cruel and difficult world, neatly formatted,
ready-to-use data is harder and hard to come by.

This tutorial will The first thing that's important to understand about

llUelellCRY/C IR GRS | of this is that the skills | am going to demo are

more advanced generic -- they work pretty much the same in any
(IR o e TR |anguage you might use, so please don't get hung up if
WHGENESSYR I IRYI I \ou're a Python maven and I'm not showing Python.
walk you through two In fact, the first part of this tutorial, | programmed
different examples of in Ruby and SQL when | did my project, but I'm demoing
problems and solutions [JUIARGEEEN

involving data that The key is to learn the technique -- if you can do

does not come in that, you can easily figure out how to get it to work in
whatever language you use.

row-and-column
format.

In the first example, | will deploy what can generically be called
“String Expressions”. These are commands built into whatever
programming language you might use, and can, in combination, be very
powerful tools for taming data.

And the second example, | will use what are called “Regular
Expressions” --an ancient but powerful pattern-matching technique that can
help you parse data that has some structure other than rows and columns.

So like all great stories begin, let me show you a problem | had to
face and how | solved it, using string expressions.

As some of you may have heard, in the U.S we have a president that
is doing things a bit differently than his predecessors.

And because one of the key presidential powers is the appointment of
federal judges, we wanted to check in and see what we could learn about
his appointees.

Fast-forwarding through some of the preliminary reporting, our focus
became the U.S. Court of Appeals, the 2nd highest level below the U.S.
Supreme Court.

A lot had been written about how President Trump was selecting
ultra-conservative judges -- but we wanted to see how these judges were
actually performing on the bench.

Fast-forwarding again, | found a government source that provided a
standard database of court cases -- but the fields containing the names of
judges handling each case were-- REDACTED!

We could have put up a big stink and insisted that the names of
public judges hearing public court cases should not be redacted from a
public database, but we also had a plan B -- obtaining the text of rulings
issued in the cases and pulling the names right from the document.

PUBLISHED

UNITED STATES COURT OF APPEALS
FOR THE FOURTH CIRCUIT

No. 18-1886

NGAWUNG ATEMNKENG,
Petitioner,
V.
WILLIAM P. BARR, Attorney General,

Respondent.

On Petition for Review of an Order of the Board of Immigration Appeals.

Argued: October 29, 2019 Decided: January 24, 2020

NAMES OF JUDGES

Before GREGORY, Chief Judge, WYNN, and THACKER, Circuit Judges.

AUTHOR
Petition for review granted; vacated, and remanded by published opinion. Chief Judge Gregory
wrote the opinion, in which Judge Wynn and Judge Thacker joined.

ARGIJED: Ronald Darwin Richev. LAW OFFICE OF RONAT.D D. RICHEY . Rockville.

So this clearly isn’'t rows and columns but the data we wanted was in
there -- | added blue labels for demonstration purposes but they are not in
the actual text.

What | needed to do is figure out a pattern of some kind that | could
use to identify where the judge names are listed. And then | needed a
second pattern to determine which of the judges wrote the opinion.

Let me show you how | did it: (you can follow along here https://
posit.cloud/content/8230772 if you'd like - log in via Google).
This is some code in the R programming language. Lines starting with #
are comments, the rest is code and output:

load PDF processing library or install/load it if necessary
needs (pdftools)

declare path to the file
thefile="https: : i .gov/content/pkg/USCOURTS-cad-1

8-01886/pdf/USCOURTS-ca4-18-01886-0.pdf"

open the file and store the text into a variable
thecase=pdf_text(thefile)

#view the output
> thecase
[1] "USCA4 Appeal: 18-1886 Doc: 45 Filed:

01/24/2020 Pg: 1 of 206\n
PUBLISHED\n UNITED STATES COURT
OF APPEALS\n FOR THE
FOURTH CIRCUIT\n
No. 18-1886\n NGAWUNG ATEMNKENG, \n
Petitioner,\n v.\n WILLIAM P. BARR,
Attorney General,\n Respondent.\n
On Petition for Review of an Order of the Board of Immigration
Appeals.\n Argued: October 29, 2019
Decided: January 24, 2020\n Before GREGORY, Chief Judge,
WYNN, and THACKER, Circuit Judges.\n Petition for review

granted; vacated, and remanded by published opinion. Chief Judge

Gregory\n wrote the opinion,

Now that we have the document text stored in a variable called
“thecase”, we can now figure out how to get our judge names.

This is where | pause to say that there is no one-size-fits-all approach
to these problems. Every advanced parse you’re going to do will be
different.

What you need to do is study your documents and look for something
that they all have in common, something that, if you read the documents
programmatically, your code will behave the same with each document.

In this case, what we discovered is: In every document, the names of
judges are preceded by the word “Before”.

If we could just tell our program, find the word “Before” and give us
what comes after it, we would be golden.

Enter the “SPLIT” function. Split is a string function that exists in
every language and what it does, living up to its name, is split your text
based on whatever divider you feed it.

So in our case, we can pass the word “Before” as a divider:

str_split(thecase,"Before")

Produces this output:

> str_split(thecase, "Before™)
[0
[1] "USCA4 Appeal: 18-1886 Doc: 45 Filed: 01/24/2020 Pg: 1 of 20\n
STATES COURT OF APPEALS\n FOR THE FOURTH CIRCUIT\n
Petitioner,\n v.\n WILLIAM P. BARR, Attorney General,\n
an Order of the Board of Immigration Appeals.\n Argued: October 29, 2019

[2] " GREGORY, Chief Judge, WYNN, and THACKER, Circuit Judges.\n Petition for review granted; vacated, and remandec
inion, in which Judge Wynn and Judge Thacker joined.\n ARGUED: Ronald Darwin Richey, LAW OFFICE OF RONALD D. RICHE\
yson, Jr., UNITED STATES DEPARTMENT\n OF JUSTICE, Washington, D.C., for Respondent. ON BRIEF: Joseph H. Hunt, Assi:
r, Office of Immigration Litigation,\n Civil Division, UNITED STATES DEPARTMENT OF JUSTICE, Washington, D.C., for\r

(211

[1] "USCA4 Appeal: 18-1886 Doc: 45 Filed: 01/24/2020 Pg: 2 of 20\n GREGORY, Chief Judge:\n
y after participating in\n anti-government meetings and protests, getting arrested and was detained without trial\r
fficers, and receiving numerous\n death threats. An immigration judge (“IJ”) initially noted some inconsistencies
credible and her explanations\n plausible, and granted her asylum application. On appeal, the Board of Immigratior
structed the IJ, in reviewing the\n asylum application a second time, to afford Atemnkeng an opportunity to explair
ng has now relocated to Baltimore and the new IJ (“Baltimore\n I1J”) permitted her to submit additional documents ir
er calendar hearing. Approximately one month prior to the hearing,\n however, the Baltimore IJ issued a written rul
er reliefs. The Baltimore IJ concluded, without Atemnkeng’s new\n testimony, that she was not credible in ligt
o0 the BIA, the Baltimore IJ’s ruling was affirmed without an opinion. Atemnkeng\n now petitions for review of the [
In her petition for review, she raises several claims, most notably, that her due\n process rights were viol
stify\n on remand. Concluding that Atemnkeng’s claim related to her ability to testify is\n meritorious,

and remand for\n 2\n"

(0311

[1] "USCA4 Appeal: 18-1886 Doc: 45 Filed: 01/24/2020 Pg: 3 of 20\n further proceedings. In light of
mnkeng an opportunity to testify and weigh the relevance of that testimony in\n conjunction with the entire record,
determination and denials of Atemnkeng’s applications for withholding of removal and\n relief under the Conventior

I.\n Atemnkeng is a national and citizen of Cameroon. She and her family 1li

s e L L e i L L R L S A I Pr PR SRS, T DT RO R i At e s SR SOV A 1R I R R R TR

So what the split function has done is divide our document into “vectors”.
You don’t really need to know what a “vector” is, just that it's an object that
can be accessed with the coordinates provided, following the hierarchy
provided. In this case, the PDF parser we're using divides the document
pages into vectors, and then our split function created a second set of
vectors within the pages.

In our case, we're interested in the [[1]][2] vector, so:

judgestring<- str_split(thecase, "Before ")[[1]][2]

>

> judgestring

[1] "GREGORY, Chief Judge, WYNN, and THACKER, Circuit
Judges.\n Petition for review granted; vacated, and remanded by
published opinion. Chief Judge Gregory\n wrote the opinion, in
which Judge Wynn and Judge Thacker joined.\n ARGUED:
Ronald Darwin Richey, LAW OFFICE OF RONALD D. RICHEY,
Rockville,\n Maryland, for Petitioner. Robert Dale Tennyson, Jr.,
UNITED STATES DEPARTMENT\n OF JUSTICE, Washington,
D.C., for Respondent. ON BRIEF: Joseph H. Hunt, Assistant\n
Attorney General, Carl Mcintyre, Assistant Director, Office of
Immigration Litigation,\n Civil Division, UNITED STATES
DEPARTMENT OF JUSTICE, Washington, D.C., for\n
Respondent.\n"

Now we’re getting closer, but still not there. If you wanted to narrow it
down more, what would our next split be?

> str_split(judgestring, "\n")

[[1]]

[1] "GREGORY, Chief Judge, WYNN, and THACKER, Circuit Judges."
2]" Petition for review granted; vacated, and remanded by published
opinion. Chief Judge Gregory"

[3]" wrote the opinion, in which Judge Wynn and Judge Thacker joined."
(4] " ARGUED: Ronald Darwin Richey, LAW OFFICE OF RONALD D.
RICHEY, Rockuville,"

[5] " Maryland, for Petitioner. Robert Dale Tennyson, Jr., UNITED
STATES DEPARTMENT"

(6] " OF JUSTICE, Washington, D.C., for Respondent. ON BRIEF:
Joseph H. Hunt, Assistant"

1™ Attorney General, Carl MclIntyre, Assistant Director, Office of
Immigration Litigation,"

(8] " Civil Division, UNITED STATES DEPARTMENT OF JUSTICE,
Washington, D.C., for"

9] " Respondent.”

(101™

>

> judgestring <- str_split(judgestring,”\n")[[1]][1]

>

> judgestring

[1] "GREGORY, Chief Judge, WYNN, and THACKER, Circuit Judges."

So this time we split on the line break character “\n” that surfaced
when we pulled the text out of the PDF. The character has nothing to do
with what we’re doing - we’re not displaying the text, we’re parsing it -- but
in parsing, we use what we find and if that’s part of the document format,
it's helpful.

Now to clean up a little more, we will use another string expression
called GSUB - - GSUB is shorthand for “global substitution” and in our
case, we can search/replace out words that are not judge names:

judgestring

[1] "GREGORY, Chief Judge, WYNN, and THACKER, Circuit Judges."
>

>

> judgestring<- gsub("ChieflJudge|Circuit|Judges|and|\\.| ","" judgestring)

>

> judgestring
[1] "GREGORY,,WYNN,THACKER,"

Let me explain what’s going on here.

PART 1: gsub("Chief|Judge|Circuit|Judges|and|\\.| ",
PART 2: ",

PART 3: judgestring)

The first part of gsub, I'm feeding it a list of words that | want to get rid
of. I'm separating it with the | symbol, which in R is the same as “or”.

So I'm saying, get rid of any string that matches “Chief’ or “Judge”
etc.

Notice the \\. | want to get rid of any periods, but a period is a
“reserved” character that has other meanings in the programming
language. So to tell R that | literally mean to get rid of the periods, I'm using
the \ symbol to “escape” my command. And because the \ symbol is itself a
reserved character, I'm using two.

(Ok, for people new to this, this is CRAZY talk. But if you do this a bit,
you'll get used to it. Just remember in whatever language you’re working in,
you want to find out how to handle reserved characters).

Finally, notice the space between the last | and the close quote --
that’s to get rid of any extra spaces between names.

The second part is telling R what to use as a replacement, and in this
case, open quote/close quote means replace with nothing.

And the third part is telling R what string to apply this logic to.

So in sum, and in any language, there will be a version of gsub that
works the same way, taking three options:

gsub(replacethis, withthis, fromthis).

In a full program, this string of three names can be parsed many
ways. In our case, we stored the names in a database and joined them to
fuller biographic info we had on the judges.

So the next question was: How do we pull out the name of the judge
that wrote the opinion?

msuuu. UVIVUUNL LT, VLT LV iIuvua. Ja.uumy LT, v

Names of Judges
Before GREGORY, Chief Judge, WYNN, and THACKER, Circuit Judges.

Petition for review granted; vacated, and remanded by published opinion. Chief Judge Gregory
wrote the opinion, in which Judge Wynn and Judge Thacker joined.

If you look at enough of these documents, you’ll notice another pattern.
After listing the three judges, the NEXT time you see a judge’s name, it's
the one that wrote the opinion.

So what | had to figure out was how to programmatically measure
which name appeared soonest in the
document after all three were named. With any programming

In R, we can do this with a function language. there are a lot of different
Ca”ed “GREGEXPR” libraries that hel ’OU et thins

)) . done -- you don’t have to memorize
This function evaluations the document

them all! You just need to know what
and tells you the starting position, in spaces, you want to do and how to research

i he answer,
of every occurrence of the string. the answer.

| can also tell it to ignore case, which is
a good idea because sometimes we expect the judge’s name to be in all
caps and sometimes in titlecase:

gregexpr(whattolookfor,wheretolook,ignorecase)|first]vector][first2values

> gregexpr("Gregory", thecase, ignore.case=TRUE)[[1]][1:2]
[1] 697 846 # The position of the first 2 matches

> gregexpr("Wynn" thecase,ignore.case=TRUE)[[1]][1:2]
[1] 719 895 # The position of the first 2 matches

> gregexpr("Thacker" thecase,ignore.case=TRUE)[[1]][1:2]
[1]1 729 910 # The position of the first 2 matches

Similar to gsub, we’re feeding gregexpr a series of parameters -- the
string we’re looking for, which is the judge name, the name of the variable
holding our text, and a flag telling it to ignore case. Then we’re telling us to
give us the first element - which is the list of positions for our string, and to
give us the first two occurrences.

In my production app (written in a diff language so not displayed
here), | looped through all of the cases, stored all of the judges names in a
database as judge1, judge2, and judge3 and then looped through each
case again, feeding each judge name dynamically and calculating which
judge had the lowest index value for the 2nd occurrence and used that to
make my preliminary estimate of the opinion author.

Here is the resulting story.

In closing this first part, a few things to keep in mind.

String expressions are a fabulous tool but this type of parsing is rarely
perfect. There are frequent exceptions to the patterns you find, and your
scripts might produce 90 pct clean data -- and you'll have to manually fix
the other 10 pct.

But this is much much better than manually cleaning 100 pct.

Also, | can’t say this enough -- to be good at this, you do not have to
memorize all of the string functions and all of the syntax. You can look all of
this up as you need it.

The most important skill is to be able to see patterns in your
unstructured data. If you can find a pattern, odds are that there is a way to
parse -- you just have to find the right function and the right syntax.

Which brings us to part two, using the regular expression syntax for
more intricate pattern matching.

Regular expressions, or RegEx for short, exist in numerous flavors in
a wide variety of scripting environments. These different variations might
carry slightly different syntax conventions, but the concepts are the same.

For this section, we're going to use a Web site that is designed to
help you write Regex code and extract your results.

For dirty data, we're going to turn to none other than Donald J.
Trump, and his Twitter feed.

But before we begin, let me go over some important concepts.

RegEx is all about patterns. The simplest way to think of it is to
compare it to a traditional search operation.

In a text file, you can search for a specific string, like “Belgium”, or in
a language such as SQL, you can use a wildcard character and search for
countries that begin with B, such as “where country like ‘B%".

But in RegEX, you can create very sophisticated search logic with
many types of “wildcards”. For example to search a document and find any
four-letter word that begins with T:

(Tla-z){3})

That expression is interpreted as “Starts with a capital ‘T’, and is
followed by three lower-case letters and then a space.” It will match “This ”
“Them ” “That ” but not this, these or those.

What's difficult for beginners is learning all of the possible RegEx

tools at your disposal.

In some lessons, we'd dive in with a tour of all of the common tools,
but the philosophy here is that it's better to learn while working on an actual
job, and using a tool with a beautiful cheat sheet of syntax.

So hello @realDonaldTrump

In this exercise, we're going to take 499 Trump tweets from the first
quarter of 2017 and parse the text into columns, turning them into a
tab-delimited format that we can save into a spreadsheet.

We want to capture the dates and time of tweets, the contents of the
tweets, and the software he tweeted with, which is listed at the end of each
tweet. The data comes from the Trump Twitter Archive (see
http://www.trumptwitterarchive.com/about for more info).

We are going to do our parsing using a great online tool,
http://regex101.com, and I've already created the Trump tweet file here

https://bit.ly/dhtrump.

regular EXpressions o O @regex101 $ donate -4 contact 5 bug reports & feedback M wiki
SAVE & SHARE REGULAR EXPRESSION

0 m EXPLANATION

¥ :
& J

TEST STRING SWITCH TO UNIT TESTS »

ﬂ FLAVOR

<> pcre (php) v
(2

</> javascript

s <> python
</> golang

MATCH INFORMATION
TOOLS

OQUICK REFERENCE

Regex101 is a fabulous resource because it allows you to create your
Regex code online and then bring it back into whatever environment you're
working in. For example, if you’re writing a program in Python that loops
through thousands of documents and extracts certain information with
Regex, you can test your code here before running it on the big batch.

In our case, we’re going to parse the Trump tweets and then copy
and paste the results into a spreadsheet.

The first step you want to do is get your data into the tool, so copy
and paste the Trump data into the big box labeled “Test String”. Also at this
time, lets make sure the parser knows that each Tweet in this dataset
spans multiple lines by making sure the regular expression box at the top
ends with the notation “gm” (global multiline).

REGULAR EXPRESSION m

gm

TEST STRING SWITCH TO UNIT TESTS »

Mar 29, 2017 09:12:09 PM Today we honored our true American
heroes on the first-ever National Vietnam War Veterans Day.
#ThankAVeteran.. https://t.co/deOHapcV4] [Twitter for
iPhone] 1link

Mar 29, 2017 06:58:11 PM .@FLOTUS Melania and I were
honored to stop by the Women's Empowerment Panel this
afternoon at the @WhiteHouse... https://t.co/phLPw81gTu
[Media Studio] 1link

Mar 29, 2017 04:39:01 PM Today's EO established a

To get started, we need to enter the symbol that tells Regex to start our
quest at the beginning of each new line. That is done with the symbol #

REGULAR EXPRESSION 499 matches, 2496 steps (~13ms)

B -

TEST STRING SWITCH TO UNIT TESTS »

Mar 29, 2017 ©9:12:09 PM Today we honored our true American
heroes on the first-ever National Vietnam War Veterans Day.
#ThankAVeteran.. https://t.co/deOHapcV4] [Twitter for
iPhone] 1link

Mar 29, 2017 06:58:11 PM .@FLOTUS Melania and I were
honored to stop by the Women's Empowerment Panel this
afternoon at the @WhiteHouse... https://t.co/phLPw81gTu
[Media Studio] 1link

Mar 29, 2017 ©04:39:01 PM Today's EO established a
commission on combating drug addiction and the opioid
crisis. Watch listening sessionkd.. https://t.co/ooF2edigSt
[Twitter for iPhone] 1link

EXPLANATION

v/ N/ gm

A asserts position at start of a line @

v Global pattern flags
g modifier: global. All matches (don't return
after first match)
m modifier: multiline. Causes A and $ to
match the begin/end of each line (not only
begin/end of string)

MATCH INFORMATION
Match 1

Full match ©0-0 °°
Match 2

FullSmateh 187-187 °°
Match 3

Mar 29, 2017 ©07:21:02 AM If the people of our great country

A few things to note:

-- The beginning of each line in the Test String is now marked by dots

-- A box appears above our Regular Expression letting us know there are
499 matches

-- An explanation appears on the right explaining to us in plain language
what our expression is doing

-- More information about our match appears in the “Match Information”
box.

-- Below that, and not pictured, is a handy Regex cheat sheet to guide your
way.

Ok, so let’s capture the month. If you browse the text, you'll see that Twitter
uses a three-letter abbreviation for a month symbol -- this is a pattern and
we can try to match it with regex syntax.

So we are going to create our first capture “group” (a future column in our
database) and tell it to grab a three-letter string.

It will look like this:
(\W{3})

The parens are used to declare the group, and the expression inside
literally means: Find a letter or number \w that repeats three times {3}.
Notice how all the information in the regex101 updates to show you how
the command is playing out. The \ precedes many of the regex commands.

Next we need to capture the day of the month, which is always numeric but
can be one or more digits -- another pattern!

So first enter a space - we need to account for the space between the
month and day, and then enter (\d+). As you might guess, \d means a digit,
but in this case, the + sign means one or more of. How does it know when
to stop? Because of the comma - it captures all numbers up to the comma,
which is not a digit.

Ok, next up is the year. Can you guess how we’d capture that? Try it
yourself before turning to the next page...

AQW{3}) (\d+), (\d{4}) gm v/ AQWw{3}) (\d+), (\d{4}) / gm

A asserts position at start of a line @

TEST STRING SWITCH TO UNIT TESTS » v 1st Capturing Group (\W{3})
v \w{3} matches any word character (equal t

Mar 29, 2017 ©9:12:09 PM Today we honored our true American o [a-zA-20-9_1)
heroes on the first-ever National Vietnam War Veterans Day. {31} Quantifier — Matches exactly 3 times
#ThankAVeteran.. https://t.co/deOHapcV4] [Twitter for matches the character literally (case sensitive)
iPhone] 1link v2ndCaptuﬁngGrogp(\d+)
Marli293012017 06:58:11 PM .@FLOTUS Melania and I were)1 ChESAiIRIE Rl | M—
honored to stop by the Women's Empowerment Panel this
afternoon at the @WhiteHouse... https://t.co/phLPw81gTu MATCHIINEORMATION
[Media Studio] link Match 1 (o}
Mar 29, 2017 04:39:01 PM Today's EO established a Full match ©-12 “Mar 29, 2017°
commission on combating drug addiction and the opioid Group 1. 0-3 “Mar
crisis. Watch listening sessionkd.. https://t.co/o0oF2edigSt Group 2. 4-6 '29°

[Twitter for iPhone] 1link

Mar 29, 2017 07:21:02 AM If the people of our great country
could only see how viciously and inaccurately my
administration is covered by certain media! [Twitter for Fullimatch! 187-199 “Mar 29, 2017
iPhone] 1link

Group 3. 8-12 "2017°
Match 2

Yes, combining the techniques from group 1 and group 2, we tell Regex to
expect a comma and a space, and to then create a new group with
four-digit string.

Could we have used d+? Yes, that would have also worked, but in this
case, we know the year has to be 4 digits, so declaring a four-digit number
IS more precise.

Note that in data work, dates and times formats can be messy, A valid date
in Excel might not be a valid format in MySQL. Therefore, it's often wise to
initially work with dates as components -- month, day, year -- as opposed to
trying to capture the entire date in the source data’s format.

For the time, we're going to accept the source format, but keep the AM/PM
flag as a separate column.

AOW3Y) (\d+), (\d{4}) (\d\d:\d\d:\d\d) (\w{2})

AQW{33}) (\d+), (\d{4}) (\d\d:\d\d:\d\d) (\w{2}) gm W v/ AQWw{3}) (\d+), (\d{4}) / gm

(\d\d:Nd\d:\d\d) (A\w{2})

TEST STRING SWITCH TO UNIT TESTS » A asserts position at start of a line @
v 1st Capturing Group (Aw{3})

Mar 29, 2017 09:12:09 PM Today we honored our true American v \w{3} matches any word character (equal t

heroes on the first-ever National Vietnam War Veterans Day. o [a-zA-Z0-9_])

#ThankAVeteran.. https://t.co/deOHapcV4] [Twitter for {3} Quantifier — Matches exactly 3 times

iPhone] link matches the character literally (case sensitive)

. v 2nd Capturing Group (\d+)
Mar 29, 2017 06:58:11 PM .@FLOTUS Melania and I were

honored to stop by the Women's Empowerment Panel this
afternoon at the @WhiteHouse... https://t.co/phLPw81gTu
[Media Studio] link Match 1
Mar 29, 2017 04:39:01 PM Today's EO established a Full match 0-25 l\;qul“ 29, 2017 09:12:09 P
commission on combating drug addiction and the opioid
crisis. Watch listening sessionkd.. https://t.co/ooF2edigSt
[Twitter for iPhone] 1link

MATCH INFORMATION

Group 1. 0-3 “Mar®
Group 2. 4-6 %297

Mar 29, 2017 07:21:02 AM If the people of our great country Srelipis: §=12 \2017 .
could only see how viciously and inaccurately my Group 4. 13-21 "09:12:09
administration is covered by certain media! [Twitter for Grouo 5. 22-24 "PM

Ok, so now we’re up to the Tweet itself. In this case, the pattern we want to
match is a little different. Each Tweet begins after the AM/PM label and
goes on until the meta info about what software was used, which begins
with a “[“ character. Because “[is a reserved character (remember those?)
, we’re going to have to escape it.

This sounds complicated but in regex, only requires a few characters of
code:

(-+)\

This literally means, after a space, create a group that starts with any
character and goes on indefinitely. But the group should end when it hits
the first “[“ sign, which in this case is preceded by a \ to signify that we

mean the literal “[, not the regex [syntax (Also note, if you copy and paste
this code, the “[* symbol might be interpreted as a different symbol in your
Web browser - if the code doesn’t work, delete the [you pasted and retype

it in the regex101 browser window.)

REGULAR EXPRESSION v1 v
ACW33) (\d+), (\d{4}) (\d\d:\d\d:\d\d) (\w{2}) gm
(BB

TEST STRING SWITCH TO UNIT TESTS »

Mar 29, 2017 ©9:12:09 PM Today we honored our true American
heroes on the first-ever National Vietnam War Veterans Day.
#ThankAVeteran.. https://t.co/deOHapcV4] [Twitter for
iPhone] 1link

Mar 29, 2017 06:58:11 PM .@FLOTUS Melania and I were
honored to stop by the Women's Empowerment Panel this
afternoon at the @WhiteHouse... https://t.co/phLPw81gTu
[Media Studio] 1link

Mar 29, 2017 04:39:01 PM Today's EO established a
commission on combating drug addiction and the opioid
crisis. Watch listening sessionkd.. https://t.co/ooF2edigSt
[Twitter for iPhone] 1link

MAanw 20 D17 A7:21 .07 AM TE£ +ha nannla Af Alin Anan + FAnn s

EXPLANATION

v/ RCWE3E) (\d+), (\df4d) / gm
(\d\d:\d\d:\d\d) (\w{2})
C.NL

A asserts position at start of a line @
v 1st Capturing Group (\w{3})
v \w{3} matches any word character (equal t
o[a-zA-7Z0-9_])
{3} Quantifier — Matches exactly 3 times
matches the character literallv (case sensitive)

MATCH INFORMATION

Group 4. 13-21 "09:12:09°
Group 5. 22-24 "PM°

Group 6. 25-160 “Today we honored our t
rue American heroes on

the first-ever Nationa
1 Vietnam War Veterans

Day. #ThankAVeteran.. h
ttps://t.co/deOHapcVv4]

The last part -- “Twitter for iPhone”, “Media Studio” -- we can capture with

similar syntax.

Give it a try before turning the page to see the results....

REGULAR EXPRESSION v1 v

499 matches, 52924 steps (~78ms)

AQ\W{33}) (\d+), (\d{4}) (Nd\d:\d\d:\d\d) (\w{2}) gm

(B RECEED N

TEST STRING

SWITCH TO UNIT TESTS »

Mar 29, 2017 09:12:09 PM Today we honored our true American
heroes on the first-ever National Vietnam War Veterans Day.
#ThankAVeteran.. https://t.co/deOHapcV4] [Twitter for

iPhone] 1link

Mar 29, 2017 06:58:11 PM .@FLOTUS Melania and I were
honored to stop by the Women's Empowerment Panel this

afternoon at the @WhiteHouse...

[Media Studio] 1link

https://t.co/phLPw81gTu

Mar 29, 2017 04:39:01 PM Today's EO established a
commission on combating drug addiction and the opioid
crisis. Watch listening sessionkd.. https://t.co/ooF2ediqgSt

[Twitter for iPhone] 1link

EXPLANATION

v/ AQAW{3}) (\d+), (Nd{4})
(\d\d:Nd\d:\d\d) (\w{2})
CEEDNRCEED N

A asserts position at start of a line @
v 1st Capturing Group (\w{3})
v \w{3} matches any word character (equal t
o[a-zA-Z0-9_])
{3} Quantifier — Matches exactly 3 times
matches the character literallv (case sensitive)

/ gm

MATCH INFORMATION
Match 1 -

Full match 0-180 “Mar 29, 2017 09:12:09
PM TodaX we honored ou
r true American heroes
on the first-ever Nati
onal Vietnam War Veter
ans Day. #ThankAVetera
N httgs;//t.co/deQHap
cV4] [Twitter for iPho

That’s right. We immediately create a new group after the “[“ and tell it to
capture all text until reaching the “]”, which we also have to escape. Also,
for the first time in this parse, we’re not adding a space -- if you do, the

code will not work.

The last thing we need to do is account for the dummy text at the end of
every tweet. The original source had a link back to the original tweet, which

is meaningless in this case, but we want to capture it in a group so we can
dispose of it. (.+)

So our final expression string looks like this:
Aw{3}) (\d+), (\d{4}) (\d\d:\d\d:\d\d) (\W{2}) (.+)\[(.+)\](.+)

Ok, so how do we get our parsed data into a more useful format? On the
left side of the page, click on a bar that says “Substitution”.

Mar 28, 2017 ©05:41:09 PM Why doesn't Fake News talk about
Podesta ties to Russia as covered by @FoxNews or money from
Russia to Clinton - sale of Uranium? [Twitter for iPhonel

SUBSTITUTION A

A box opens up, and in here, we’re going to tell Regex how we want our
results formatted. Let’s create a comma-delimited format with quote marks
separating the columns:

"\1 n") ll\2") "\3" , ll\4" , "\5" , ll\6") ll\7"

SUBSTITUTION
nn : "EII g IIE" : nm" ; "En : "E" : nn|

"Mar","29","2017","09:12:09","PM","Today we honored our
true American heroes on the first-ever National Vietnam War
Veterans Day. #ThankAVeteran.. https://t.co/deOHapcV4]
","Twitter for iPhone"

“Mar","29",%2017" ,"06:58:11" ,"PM" " .@FLOTUS Melania and I
were honored to stop by the Women's Empowerment Panel this
afternoon at the @WhiteHouse... https://t.co/phLPw81gTu
","Media Studio"

"Mar","29","2017","04:39:01","PM","Today's EO established
a commission on combating drug addiction and the opioid
crisis. Watch listenina sessionkd. httns://t.co/o00F2ediaSt

Literally speaking, we’re telling it to print a “, then group 1, then a quote,
comma, quote, then group 2, etc.

You can copy and paste this content into your favorite text editor and save
it as a csv file, or paste it directly into a spreadsheet program.

This entire exercise is saved at https://regex101.com/r/XxpV5G/3

On your own, clear out the Regex and start again, thinking of other things
you might want to capture: Hashtags? Links? Etc.

You'll also find more help using Regex online. While we covered only a
small portion of what you can do with Regex, | hope this exercise gives you
a base from which you can learn more.

And remember -- even the best coder/journalists in the world often struggle
with Regex -- be patient and keep trying. Almost anything is possible!

Matt Waite € @mattwaite - Aug 27 v
I've been writing code professionally for almost 14 years now and | still fist

pump and then sigh in relief every time | make a regular expression work.

Also note that this lesson was inspired by a tutorial presented at NICAR a
few years back by Christian McDonald, then of The Dallas Morning News
and now at the University of Texas.

