
MAKE PARSING GREAT AGAIN
(with string functions and regular expressions)

Robert Gebeloff @gebeloffnyt
The New York Times
Dataharvest 2024

So much of what we do in data
journalism is fun. Writing queries.
Making maps. Holding powerful
people accountable, etc.

What’s not to love?
Cleaning and parsing data, for

one.
There’s usually a time in

every project where you’re excited to
dig in, only to realize that the data
you want is not in easily diggable
format.

As data journalists, we’re
trained to think in rows and columns.

Every row is a record (name of
dog).

Every column is a
characteristic of that record. (how
many dogs have that name.

When we obtain data from the government or some other source, this
is what we expect. Clean data organized in this fashion.

But in an increasingly cruel and difficult world, neatly formatted,
ready-to-use data is harder and hard to come by.

This tutorial will
introduce you to some
more advanced
techniques of dealing
with messy data. I will
walk you through two
different examples of
problems and solutions
involving data that
does not come in
row-and-column
format.

In the first example, I will deploy what can generically be called
“String Expressions”. These are commands built into whatever
programming language you might use, and can, in combination, be very
powerful tools for taming data.

And the second example, I will use what are called “Regular
Expressions” --an ancient but powerful pattern-matching technique that can
help you parse data that has some structure other than rows and columns.

So like all great stories begin, let me show you a problem I had to
face and how I solved it, using string expressions.

As some of you may have heard, in the U.S we have a president that
is doing things a bit differently than his predecessors.

And because one of the key presidential powers is the appointment of
federal judges, we wanted to check in and see what we could learn about
his appointees.

Fast-forwarding through some of the preliminary reporting, our focus
became the U.S. Court of Appeals, the 2nd highest level below the U.S.
Supreme Court.

A lot had been written about how President Trump was selecting
ultra-conservative judges -- but we wanted to see how these judges were
actually performing on the bench.

Fast-forwarding again, I found a government source that provided a
standard database of court cases -- but the fields containing the names of
judges handling each case were-- REDACTED!

We could have put up a big stink and insisted that the names of
public judges hearing public court cases should not be redacted from a
public database, but we also had a plan B -- obtaining the text of rulings
issued in the cases and pulling the names right from the document.

So this clearly isn’t rows and columns but the data we wanted was in
there -- I added blue labels for demonstration purposes but they are not in
the actual text.

What I needed to do is figure out a pattern of some kind that I could

use to identify where the judge names are listed. And then I needed a

second pattern to determine which of the judges wrote the opinion.

Let me show you how I did it: (you can follow along here https://

posit.cloud/content/8230772 if you'd like - log in via Google).

This is some code in the R programming language. Lines starting with #

are comments, the rest is code and output:

Now that we have the document text stored in a variable called
“thecase”, we can now figure out how to get our judge names.

This is where I pause to say that there is no one-size-fits-all approach
to these problems. Every advanced parse you’re going to do will be
different.

What you need to do is study your documents and look for something
that they all have in common, something that, if you read the documents
programmatically, your code will behave the same with each document.

In this case, what we discovered is: In every document, the names of
judges are preceded by the word “Before”.

If we could just tell our program, find the word “Before” and give us
what comes after it, we would be golden.

Enter the “SPLIT” function. Split is a string function that exists in
every language and what it does, living up to its name, is split your text
based on whatever divider you feed it.

So in our case, we can pass the word “Before” as a divider:

Produces this output:

So what the split function has done is divide our document into “vectors”.
You don’t really need to know what a “vector” is, just that it’s an object that
can be accessed with the coordinates provided, following the hierarchy
provided. In this case, the PDF parser we’re using divides the document
pages into vectors, and then our split function created a second set of
vectors within the pages.

In our case, we’re interested in the [[1]][2] vector, so:

Now we’re getting closer, but still not there. If you wanted to narrow it
down more, what would our next split be?

So this time we split on the line break character “\n” that surfaced
when we pulled the text out of the PDF. The character has nothing to do
with what we’re doing - we’re not displaying the text, we’re parsing it -- but
in parsing, we use what we find and if that’s part of the document format,
it’s helpful.

Now to clean up a little more, we will use another string expression
called GSUB - - GSUB is shorthand for “global substitution” and in our
case, we can search/replace out words that are not judge names:

Let me explain what’s going on here.
PART 1: gsub("Chief|Judge|Circuit|Judges|and|\\.| ",
PART 2: "",
PART 3: judgestring)

The first part of gsub, I’m feeding it a list of words that I want to get rid
of. I’m separating it with the | symbol, which in R is the same as “or”.

So I’m saying, get rid of any string that matches “Chief” or “Judge”
etc.

Notice the \\. I want to get rid of any periods, but a period is a
“reserved” character that has other meanings in the programming
language. So to tell R that I literally mean to get rid of the periods, I’m using
the \ symbol to “escape” my command. And because the \ symbol is itself a
reserved character, I’m using two.

(Ok, for people new to this, this is CRAZY talk. But if you do this a bit,
you’ll get used to it. Just remember in whatever language you’re working in,
you want to find out how to handle reserved characters).

Finally, notice the space between the last | and the close quote --
that’s to get rid of any extra spaces between names.

The second part is telling R what to use as a replacement, and in this
case, open quote/close quote means replace with nothing.

And the third part is telling R what string to apply this logic to.
So in sum, and in any language, there will be a version of gsub that

works the same way, taking three options:

gsub(replacethis, withthis, fromthis).
In a full program, this string of three names can be parsed many

ways. In our case, we stored the names in a database and joined them to
fuller biographic info we had on the judges.

So the next question was: How do we pull out the name of the judge
that wrote the opinion?

If you look at enough of these documents, you’ll notice another pattern.
After listing the three judges, the NEXT time you see a judge’s name, it’s
the one that wrote the opinion.

So what I had to figure out was how to programmatically measure
which name appeared soonest in the
document after all three were named.

In R, we can do this with a function
called “GREGEXPR”.

This function evaluations the document
and tells you the starting position, in spaces,
of every occurrence of the string.

I can also tell it to ignore case, which is
a good idea because sometimes we expect the judge’s name to be in all
caps and sometimes in titlecase:

Similar to gsub, we’re feeding gregexpr a series of parameters -- the
string we’re looking for, which is the judge name, the name of the variable
holding our text, and a flag telling it to ignore case. Then we’re telling us to
give us the first element - which is the list of positions for our string, and to
give us the first two occurrences.

In my production app (written in a diff language so not displayed
here), I looped through all of the cases, stored all of the judges names in a
database as judge1, judge2, and judge3 and then looped through each
case again, feeding each judge name dynamically and calculating which
judge had the lowest index value for the 2nd occurrence and used that to
make my preliminary estimate of the opinion author.

Here is the resulting story.
In closing this first part, a few things to keep in mind.
String expressions are a fabulous tool but this type of parsing is rarely

perfect. There are frequent exceptions to the patterns you find, and your
scripts might produce 90 pct clean data -- and you’ll have to manually fix
the other 10 pct.

But this is much much better than manually cleaning 100 pct.
Also, I can’t say this enough -- to be good at this, you do not have to

memorize all of the string functions and all of the syntax. You can look all of
this up as you need it.

The most important skill is to be able to see patterns in your
unstructured data. If you can find a pattern, odds are that there is a way to
parse -- you just have to find the right function and the right syntax.

Which brings us to part two, using the regular expression syntax for
more intricate pattern matching.

Regular expressions, or RegEx for short, exist in numerous flavors in
a wide variety of scripting environments. These different variations might
carry slightly different syntax conventions, but the concepts are the same.

For this section, we’re going to use a Web site that is designed to
help you write Regex code and extract your results.

For dirty data, we’re going to turn to none other than Donald J.
Trump, and his Twitter feed.

But before we begin, let me go over some important concepts.
RegEx is all about patterns. The simplest way to think of it is to

compare it to a traditional search operation.
In a text file, you can search for a specific string, like “Belgium”, or in

a language such as SQL, you can use a wildcard character and search for
countries that begin with B, such as “where country like ‘B%’”.

But in RegEx, you can create very sophisticated search logic with
many types of “wildcards”. For example to search a document and find any
four-letter word that begins with T:

(T[a-z]{3})

That expression is interpreted as “Starts with a capital ‘T’, and is
followed by three lower-case letters and then a space.” It will match “This ”
“Them ” “That ” but not this, these or those.

What’s difficult for beginners is learning all of the possible RegEx
tools at your disposal.

In some lessons, we’d dive in with a tour of all of the common tools,
but the philosophy here is that it’s better to learn while working on an actual
job, and using a tool with a beautiful cheat sheet of syntax.

So hello @realDonaldTrump
In this exercise, we’re going to take 499 Trump tweets from the first

quarter of 2017 and parse the text into columns, turning them into a
tab-delimited format that we can save into a spreadsheet.

We want to capture the dates and time of tweets, the contents of the
tweets, and the software he tweeted with, which is listed at the end of each
tweet. The data comes from the Trump Twitter Archive (see
http://www.trumptwitterarchive.com/about for more info).

We are going to do our parsing using a great online tool,
http://regex101.com, and I’ve already created the Trump tweet file here
https://bit.ly/dhtrump.

Regex101 is a fabulous resource because it allows you to create your
Regex code online and then bring it back into whatever environment you’re
working in. For example, if you’re writing a program in Python that loops
through thousands of documents and extracts certain information with
Regex, you can test your code here before running it on the big batch.

In our case, we’re going to parse the Trump tweets and then copy
and paste the results into a spreadsheet.

The first step you want to do is get your data into the tool, so copy
and paste the Trump data into the big box labeled “Test String”. Also at this
time, lets make sure the parser knows that each Tweet in this dataset
spans multiple lines by making sure the regular expression box at the top
ends with the notation “gm” (global multiline).

To get started, we need to enter the symbol that tells Regex to start our
quest at the beginning of each new line. That is done with the symbol ^

A few things to note:
-- The beginning of each line in the Test String is now marked by dots
-- A box appears above our Regular Expression letting us know there are
499 matches
-- An explanation appears on the right explaining to us in plain language
what our expression is doing
-- More information about our match appears in the “Match Information”
box.
-- Below that, and not pictured, is a handy Regex cheat sheet to guide your
way.

Ok, so let’s capture the month. If you browse the text, you’ll see that Twitter
uses a three-letter abbreviation for a month symbol -- this is a pattern and
we can try to match it with regex syntax.

So we are going to create our first capture “group” (a future column in our
database) and tell it to grab a three-letter string.

It will look like this:
(\w{3})

The parens are used to declare the group, and the expression inside
literally means: Find a letter or number \w that repeats three times {3}.
Notice how all the information in the regex101 updates to show you how
the command is playing out. The \ precedes many of the regex commands.

Next we need to capture the day of the month, which is always numeric but
can be one or more digits -- another pattern!

So first enter a space - we need to account for the space between the
month and day, and then enter (\d+). As you might guess, \d means a digit,
but in this case, the + sign means one or more of. How does it know when
to stop? Because of the comma - it captures all numbers up to the comma,
which is not a digit.

Ok, next up is the year. Can you guess how we’d capture that? Try it
yourself before turning to the next page…

Yes, combining the techniques from group 1 and group 2, we tell Regex to
expect a comma and a space, and to then create a new group with
four-digit string.

Could we have used d+? Yes, that would have also worked, but in this
case, we know the year has to be 4 digits, so declaring a four-digit number
is more precise.

Note that in data work, dates and times formats can be messy, A valid date
in Excel might not be a valid format in MySQL. Therefore, it’s often wise to
initially work with dates as components -- month, day, year -- as opposed to
trying to capture the entire date in the source data’s format.

For the time, we’re going to accept the source format, but keep the AM/PM
flag as a separate column.

^(\w{3}) (\d+), (\d{4}) (\d\d:\d\d:\d\d) (\w{2})

Ok, so now we’re up to the Tweet itself. In this case, the pattern we want to
match is a little different. Each Tweet begins after the AM/PM label and
goes on until the meta info about what software was used, which begins
with a “[“ character. Because “[“ is a reserved character (remember those?)
, we’re going to have to escape it.

This sounds complicated but in regex, only requires a few characters of
code:

(.+)\[

This literally means, after a space, create a group that starts with any
character and goes on indefinitely. But the group should end when it hits
the first “[“ sign, which in this case is preceded by a \ to signify that we
mean the literal “[“, not the regex [syntax (Also note, if you copy and paste
this code, the “[“ symbol might be interpreted as a different symbol in your
Web browser - if the code doesn’t work, delete the [you pasted and retype
it in the regex101 browser window.)

The last part -- “Twitter for iPhone”, “Media Studio” -- we can capture with
similar syntax.

Give it a try before turning the page to see the results….

That’s right. We immediately create a new group after the “[“ and tell it to
capture all text until reaching the “]”, which we also have to escape. Also,
for the first time in this parse, we’re not adding a space -- if you do, the
code will not work.

The last thing we need to do is account for the dummy text at the end of
every tweet. The original source had a link back to the original tweet, which

is meaningless in this case, but we want to capture it in a group so we can
dispose of it. (.+)

So our final expression string looks like this:

^(\w{3}) (\d+), (\d{4}) (\d\d:\d\d:\d\d) (\w{2}) (.+)\[(.+)\](.+)

Ok, so how do we get our parsed data into a more useful format? On the
left side of the page, click on a bar that says “Substitution”.

A box opens up, and in here, we’re going to tell Regex how we want our
results formatted. Let’s create a comma-delimited format with quote marks
separating the columns:

"\1","\2","\3","\4","\5","\6","\7"

Literally speaking, we’re telling it to print a “, then group 1, then a quote,
comma, quote, then group 2, etc.

You can copy and paste this content into your favorite text editor and save
it as a csv file, or paste it directly into a spreadsheet program.

This entire exercise is saved at https://regex101.com/r/XxpV5G/3

On your own, clear out the Regex and start again, thinking of other things
you might want to capture: Hashtags? Links? Etc.

You’ll also find more help using Regex online. While we covered only a
small portion of what you can do with Regex, I hope this exercise gives you
a base from which you can learn more.

And remember -- even the best coder/journalists in the world often struggle
with Regex -- be patient and keep trying. Almost anything is possible!

Also note that this lesson was inspired by a tutorial presented at NICAR a
few years back by Christian McDonald, then of The Dallas Morning News
and now at the University of Texas.

